

ADITIVO ANTIMICOTOXINA MITIGA OS EFEITOS DELETÉRIOS DO DEOXINIVALENOL E DA FUMONISINA SOBRE O DESEMPENHO DE FRANGOS DE CORTE

 $\frac{\text{ANDREIA MASSUQUETTO}^1, \text{THIAGO P. RIBEIRO}^1, \text{GABRIEL A. DE ARAUJO}^1, \text{GLEISSON B. TRENTINI}^1,}{\text{LEANDRO SILVA}^1, \text{SAMUEL A. DOS SANTOS}^1, \text{DANIEL P. MONTEIRO}^1}$

¹Tectron – Tecnologia e Inovação

Contato: andreia.massuquetto@tectron.com / Apresentador: ANDREIA MASSUQUETTO

Resumo: Este estudo avaliou a eficácia de um aditivo antimicotoxinas (ADS) em frangos de corte expostos a dietas contaminadas com 50,0 ppm de deoxinivalenol (DON) e 100,0 ppm de fumonisinas (FUM). Foram conduzidos dois experimentos de 21 dias, utilizando 240 aves para o estudo de desafio com DON e 480 aves para o desafio com FUM, distribuídas em delineamento inteiramente casualizado. Os tratamentos que compuseram as dietas foram: 1 – controle negativo, sem micotoxinas (CN); 2 – controle positivo, dieta contaminada com 50,0 ppm de DON (CP-DON) ou 100,0 ppm de FUM (CP-FUM); 3 – dieta CP + 0,05% de ADS; 4 – dieta CP + 0,10% de ADS. Foi verificada a normalidade dos dados pelo teste de Shapiro-Wilk, assim como a variância por teste de Levene e comparados por t de Student a 5%. Frangos alimentados com dietas contaminadas com DON e FUM apresentaram menor consumo de ração (CR), menor peso vivo (PV), porém não houve efeito na conversão alimentar (CA). A suplementação de 0,10% do ADS atenuou os efeitos deletérios sobre CR e PV causados pela DON e FUM (P<0,05), mas não influenciou a CA independente da dose utilizada (P>0,05). Os resultados indicam que o aditivo antimicotoxina reduz os efeitos negativos das micotoxinas sobre desempenho de frangos de corte.

Palavras Chaves: adsorvente de micotoxinas; aves; aluminossilicatos modificados; leveduras; performance

MYCOTOXIN BINDER MITIGATES THE DELETERIOUS EFFECTS OF DEOXYNIVALENOL AND FUMONISIN ON THE PERFORMANCE OF BROILER CHICKENS

Abstract: This study aimed to evaluate the efficacy of a mycotoxin binder (MB) in broilers exposed to diets contaminated with 50.0 ppm deoxynivalenol (DON) and 100.0 ppm fumonisins (FUM). Two 21-day experiments were conducted, using 240 birds for the DON challenge study and 480 birds for the FUM challenge, distributed in a completely randomized design. The treatments were: 1 – negative control group fed an uncontaminated diet (NC); 2 – positive control group fed diets contaminated with 50.0 ppm DON (PC-DON) or 100.0 ppm FUM (PC-FUM); 3 – PC + 0.05% MB; 4 – CP + 0.10% MB. The normality of the data was verified by the Shapiro-Wilk test, as well as the variance by Levene's test and compared by Student's t-test at 5%. Broilers fed diets contaminated with DON and FUM showed lower feed intake (FI) and lower live weight (LW), but there was no effect on feed conversion (FCR). Supplementation with 0.10% of MB attenuated the deleterious effects on FI and LW caused by DON and FUM (P<0.05), but did not influence FCR regardless of the dose used (P>0.05). The results indicate that the mycotoxin binder reduces the negative effects of mycotoxins on broilers performance. **Keywords:** mycotoxin binder; poultry; modified aluminosilicates; yeasts; performance

Introdução: Micotoxinas estão comumente presentes em dietas para aves, com destaque para a prevalência de fumonisinas (FUM) e deoxinivalenol (DON; Niaz et al. 2025). Adicionalmente, os efeitos negativos são potencializados quando há presença de mais de uma micotoxina, provocando queda de desempenho, piora na imunidade e na saúde intestinal (Antonissen et al. 2014). A contaminação varia conforme o tipo de matéria-prima, condições ambientais, processamento, produção e armazenamento. Neste contexto, diversas estratégias podem ser utilizadas para reduzir a incidência de micotoxinas como melhorias em técnicas armazenamento, qualificação e fornecedores nas fábricas e uso de aditivos antimicotoxina de amplo espectro nas dietas. Dessa forma, o objetivo deste estudo foi de avaliar a eficácia de um aditivo antimicotoxinas na manutenção do desempenho de frangos de corte expostos a dietas contaminadas com 50,0 ppm de deoxinivalenol e 100,0 ppm de fumonisinas.

Material e Métodos: Dois experimentos foram conduzidos no Instituto Samitec para avaliar a eficácia de diferentes inclusões (0,05% e 0,10%) de um aditivo antimicotoxina frente aos efeitos deletérios das micotoxinas DON (50,0 ppm) e FUM (100,0 ppm) sobre o desempenho de frangos de corte. Foram utilizados frangos machos Cobb500 (peso médio inicial de 42,56 g), alojados em gaiolas de 1 a 21 dias. Os animais foram distribuídos em delineamento inteiramente ao acaso, com 240 aves distribuídas em 4 tratamentos e 6 repetições para DON, e 480 aves em 4 tratamentos e 10 repetições para FUM. Os tratamentos que compuseram as dietas foram: 1 – controle negativo, sem micotoxinas (CN); 2 – controle positivo, dieta contaminada com 50,0 ppm de DON (CP-DON) ou 100,0 ppm de FUM (CP-FUM); 3 – dieta CP + 0,05% de ADS; 4 – dieta CP + 0,10% de ADS. O aditivo avaliado era composto por aluminossilicato de cálcio e sódio, bentonita, parede celular de levedura, levedura de panificação autolisada e desidratada e levedura de cana-de-açúcar inativada e desidratada (produto comercial Yeasttec; Tectron, Toledo, Brasil). A micotoxina deoxinivalenol foi obtida a partir do cultivo de uma cepa toxígena de *Fusarium graminearum*. Já as fumonisinas B1 (95,8%) e B2 (4,2%) foram obtidas do cultivo de *Fusarium moniliforme*. Foram mensurados semanalmente até os 21 dias de idade o consumo de ração (CR), peso vivo dos animais (PV) e a conversão alimentar (CA). A análise estatística incluiu testes de Shapiro-Wilk, e Levene para normalidade e homogeneidade, respectivamente, com comparações por teste t de Student a 5% de probabilidade.

Resultado e Discussão: Os resultados de CR, PV e CA de frangos expostos a DON por 21 dias estão apresentados na Tabela 1. Os animais que receberam 50,0 ppm de DON apresentaram menor consumo acumulado (P=0,021) em comparação a dieta basal, mas a adição de 0,10% de ADS mitigou essa redução (P=0,031). O peso final aos 21 dias também foi reduzido pela DON (P=0,026), efeito amenizado pelo de aditivo (P=0,014). A conversão alimentar não foi afetada (P=0,727), sem efeito significativo do aditivo avaliado (P>0,05). Na Tabela 2 estão apresentados os resultados do desafio de FUM. O CR foi prejudicado em dietas contaminadas com 100,0 ppm de fumonisinas (P=0,004), mas a inclusão de 0,10% de ADS atenuou essa queda nos primeiros 14 dias (P=0,019). O peso final aos 14 dias foi menor nos frangos expostos às fumonisinas, efeito amenizado pelo ADS (P=0,016). A conversão alimentar não foi afetada (P=0,224), e a suplementação não resultou em melhorias nessa variável (P>0,05). Dentre as possíveis causas para a redução do desempenho destacam-se a imunossupressão causada por essas micotoxinas (Shanmugasundaram et al. 2025), o efeito negativo sobre as junções oclusivas no intestino e a redução da integridade intestinal (Antonissen et al. 2014) e danos a órgãos e suas funções, especialmente fígado. Aditivos antimicotoxina, com destaque àqueles à base de leveduras inativadas e parede de leveduras, possuem capacidade de adsorção de fusarium toxinas, principalmente pela interação das paredes celulares com os contaminantes, variando conforme a composição celular (Luo et al., 2019).

Tabela 1. Consumo de ração, peso vivo e conversão alimentar de frangos de corte alimentados com dieta contaminada com 50,0 ppm de DON, com ou sem a adição de aditivo antimicotoxina, durante 21 dias.

	Consu	ımo de raçã	0		
Tratamentos	1-21 dias	DP	CV	Hipótese	P-Valor
T1 - CN - dieta basal	1141,10	35,7	3,1	T1vsT2	0,021
T2 - CP - 50 ppm DON	1088,21	42,7	3,9	T2vsT3	0,373
T3 - CP + 0.05% ADS	1095,30	29,8	2,7	T2vsT4	0,031
T4 - CP + 0,01% ADS	1142,34	46,5	4,1		
	Pe	eso Final			
Tratamentos	21 dias	DP	CV	Hipótese	P-Valor
T1 - CN - dieta basal	792,30	27,9	3,5	T1vsT2	0,026
T2 - CP - 50 ppm DON	762,34	18,2	2,4	T2vsT3	0,913
T3 - CP + 0,05% ADS	747,60	16,7	2,2	T2vsT4	0,014
T4 - CP + 0,01% ADS	793,51	23,6	3,0		
	Conver	são Alimen	tar		
Tratamentos	g/lg	DP	CV	Hipótese	P-Valor
T1 - CN - dieta basal	1,523	0,03	1,67	T1vsT2	0,727
T2 - CP - 50 ppm DON	1,512	0,03	2,31	T2vsT3	0,986
T3 - CP + 0,05% ADS	1,553	0,02	1,23	T2vsT4	0,694
T4 - CP + 0,01% ADS	1,521	0,02	1,63		

T1 - Controle negativo, sem micotoxinas (CN); 2 - Controle positivo, dieta contaminada com 50,0 ppm de DON (CP); 3 - dieta CP + 0,05% de aditivo antimicotoxina; 4 - dieta CP + 0,10% de de aditivo antimicotoxina;

Tabela 2 - Consumo de ração, peso vivo e conversão alimentar de frangos de corte alimentados com dieta contendo FUMO, com ou sem a adição de aditivo antimicotoxina, durante 21 dias

	Consun	10 de raçã	io		
Tratamentos	1-14 dias	DP	CV	Hipótese	P-Valor
T1 - CN - dieta basal	633,65	22,4	3,5	T1vsT2	<0,001
T2 - CP - 100 ppm FUM	566,29	38,1	6,7	T2vsT3	0,329
T3 - CP + 0,05% ADS	573,14	36,7	6,4	T2vsT4	0,019
T4 - CP + 0,01% ADS	596,85	29,2	4,9		
	Consun	no de raçã	io		
Tratamentos	1-21 dias	DP	CV	Hipótese	P-Valo
T1 - CN - dieta basal	1121,70	41,5	3,7	T1vsT2	0,004
T2 - CP - 100 ppm FUM	1065,82	50,4	4,7	T2vsT3	0,497
T3 - CP + 0,05% ADS	1066,00	53,8	5,0	T2vsT4	0,091
T4 - CP + 0,01% ADS	1091,54	40,4	3,7		
	Pes	o Vivo			
Tratamentos	Dia 14	DP	CV	Hipótese	P-Valo
T1 - CN - dieta basal	496,27	12,0	2,4	T1vsT2	<0,001
T2 - CP - 100 ppm FUM	416,32	23,3	5,6	T2vsT3	0,503
T3 - CP + 0,05% ADS	416,26	23,9	5,7	T2vsT4	0,016
T4 - CP + 0,01% ADS	440,22	27,4	6,2		
	Pes	o Vivo			
Tratamentos	Dia 21	DP	CV	Hipótese	P-Valo
T1 – CN – dieta basal	782,71	34,5	4,4	T1vsT2	<0,001
T2 - CP - 100 ppm FUM	736,20	26,0	3,5	T2vsT3	0,645
T3 - CP + 0,05% ADS	731,81	31,0	4,2	T2vsT4	0,717
T4 - CP + 0,01% ADS	728,34	39,0	5,3		
	Conversã	io Alimen	tar		
Tratamentos	g 1/g	DP	CV	Hipótese	P-Valo
Γ1 – CN – dieta basal	1,516	0,03	1,99	T1vsT2	0,224
T2 - CP - 100 ppm FUM	1,539	0,09	6,12	T2vsT3	0,604
Γ3 – CP + 0,05% ADS	1,548	0,08	4,86	T2vsT4	0,950
T4 - CP + 0,01% ADS	1,594	0.06	3.75		

T1 – Controle negativo, sem micotoxinas (CN); 2 – Controle positivo, dieta contaminada com 100,0 ppm de FUM (CP); 3 – dieta CP + 0,05% de aditivo antimicotoxina; 4 – dieta CP + 0,10% de de aditivo

Conclusão: Os resultados indicam que a exposição ao deoxinivalenol e a fumonisina afeta negativamente o consumo de ração e o peso de frangos de corte. A adição de 0,10% de aditivo antimicotoxina demonstrou potencial para atenuar esses efeitos negativos sobre o desempenho.

Agradecimentos: À empresa Tectron pelo financiamento da pesquisa e ao Instituto Samitec pelarealização dos experimentos e discussões dos resultados.

Referências Bibliográficas: ANTONISSEN, G.; MARTEL, A.; PASMANS, F.; DUCATELLE, R.; VERBRUGGHE, E.; VANDENBROUCKE, V.; LI, S.; HAESEBROUCK, F.; VAN IMMERSEEL, F.; CROUBELS, S. The Impact of Fusarium Mycotoxins on Human and Animal Host Susceptibility to Infectious Diseases. Toxins, v. 6, p. 430-452, 2014.LUO, Y.; LIU, X.; YUAN, L.; LI, J. Complicated interactions between bioadsorbents and mycotoxin adsorption: current research and future prospects. Trends in Food Science & Technology, v. 96, p. 127-134, 2020.SHANMUGASUNDARAM, R.; KAPPARI, L.; PILEWAR, M.; JONES, M. K.; OLUKOSI, O. A.; POKOO-AIKINS, A.; APPLEGATE, T. J.; GLENN, A. E. Exposure to Subclinical Doses of Fumonisins, Deoxynivalenol, and Zearalenone Affects Immune Response, Amino Acid Digestibility, and Intestinal Morphology in Broiler Chickens. Toxins, v.17, 1-26, 2025.NIAZ, W.; SHAHZAD, Z. I.; AHMAD, K.; MAJID, A.; HAIDER, W.; LI, X. A comprehensive review of its global trends in major cereals, advancements in chromatographic detections and future prospectives. Food Chemistry: X, v.27, 2025.